Solid-tumor radionuclide therapy dosimetry: new paradigms in view of tumor microenvironment and angiogenesis.

نویسندگان

  • Xuping Zhu
  • Matthew R Palmer
  • G Mike Makrigiorgos
  • Amin I Kassis
چکیده

PURPOSE The objective of this study is to evaluate requirements for radionuclide-based solid tumor therapy by assessing the radial dose distribution of beta-particle-emitting and alpha-particle-emitting molecules localized either solely within endothelial cells of tumor vasculature or diffusing from the vasculature throughout the adjacent viable tumor cells. METHODS Tumor blood vessels were modeled as a group of microcylindrical layers comprising endothelial cells (one-cell thick, 10 microm diameter), viable tumor cells (25-cell thick, 250 microm radius), and necrotic tumor region (> 250 microm from any blood vessel). Sources of radioactivity were assumed to distribute uniformly in either endothelial cells or in concentric cylindrical 10 microm shells within the viable tumor-cell region. The EGSnrc Monte Carlo simulation code system was used for beta particle dosimetry and a dose-point kernel method for alpha particle dosimetry. The radioactive decays required to deposit cytocidal doses (> or = 100 Gy) in the vascular endothelial cells (endothelial cell mean dose) or, alternatively, at the tumor edge [tumor-edge mean dose (TEMD)] of adjacent viable tumor cells were then determined for six beta (32P, 33P, 67Cu, 90Y 131I, and 1188Re) and two alpha (211At and 213Bi) particle emitters. RESULTS Contrary to previous modeling in targeted radionuclide therapy dosimetry of solid tumors, the present work restricts the region of tumor viability to 250 microm around tumor blood vessels for consistency with biological observations. For delivering > or = 100 Gy at the viable tumor edge (TEMD) rather than throughout a solid tumor, energetic beta emitters 90Y, 32P, and 188Re can be effective even when the radionuclide is confined to the blood vessel (i.e., no diffusion into the tumor). Furthermore, the increase in tumor-edge dose consequent to beta emitter diffusion is dependent on the energy of the emitted beta particles, being much greater for lower-energy emitters 131I, 67Cu, and 33P relative to higher-energy emitters 90Y, 32P, and 188Re. Compared to alpha particle emitters, a approximately 150-400 times higher number of beta-particle-emitting radioactive atoms is required to deposit the same dose in tumor neovasculature. However, for the alpha particle emitters 211At and 213Bi to be effective in irradiating viable tumor-cell regions in addition to the vasculature the carrier molecules must diffuse substantially from the vasculature into the viable tumor. CONCLUSION The presented data enable comparison of radionuclides used for antiangiogenic therapy on the basis of their radioactive decay properties, tumor neovasculature geometry, and tumor-cell viability. For alpha particle emitters or low-energy beta particle emitters, the targeting carrier molecule should be chosen to permit the radiopharmaceutical to diffuse from the endothelial wall of the blood vessel, while for long-range energetic beta particle emitters that target neovasculature, a radiopharmaceutical that binds to newly formed endothelial cells and does not diffuse is preferable. The work is a first approximation to modeling of tumor neovasculature that ignores factors such as pharmacokinetics and targeting capability of carrier molecules. The calculations quantify the interplay between irradiation of neovasculature, the surrounding viable tumor cells, and the physical properties of commonly used radionuclides and can be used to assist estimation of radioactivity to be administered for neovasculature-targeted tumor therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changing Therapeutic Paradigms: Predicting mCRC Lesion Response to Selective Internal Radionuclide Therapy (SIRT) based on Critical Absorbed Dose Thresholds: A Case Study

A 65 year old male with metastatic colorectal cancer (mCRC) in the liver was referred for selective internal radionuclide therapy (SIRT) following a history of extensive systemic chemotherapy. 90Y PET imaging was performed immediately after treatment and used to confirm lesion targeting and measure individual lesion absorbed doses. Lesion dosimetry was highly predictive of eventual response in ...

متن کامل

STAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell

Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...

متن کامل

Changing Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis

Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...

متن کامل

Dosimetry of Nano-Radio-Ytterbium Therapy by MIRD and MCNP methods for humans’ organs

Introduction: Nano radio-pharmaceutical therapy (NRPT) is a new method for solid tumor therapy. The treatment uses a radioactive form of radionuclide encapsulated in the poly amido amine dendrimers. The poly (amidoamine) (PAMAM) dendrimers have attracted attentions for cancer treatment by their characteristics of targeted drug carriers, delivery agents, and imaging agents in hu...

متن کامل

Antiangiogenic therapy: a novel approach to overcome tumor hypoxia.

Hypoxia is a common phenomenon in solid tumors. Resistance of hypoxic tumor cells to radiation is a significant reason of failure in the local control of tumors. The growth and metastasis of solid tumors rely on blood vessels. Antiangiogenic agents mainly target tumor blood vessels, and radiation therapy mainly targets tumor cells. Combination of antiangiogenic treatment and radiation exhibits ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 37 6  شماره 

صفحات  -

تاریخ انتشار 2010